3.354 \(\int \cos ^2(c+d x) \sqrt{a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=429 \[ \frac{\sqrt{a+b} (2 a (A+2 B)+A b) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{4 a d}-\frac{\sqrt{a+b} \left (4 a^2 A+4 a b B-A b^2\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{4 a^2 d}+\frac{(4 a B+A b) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{4 a d}+\frac{(a-b) \sqrt{a+b} (4 a B+A b) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{4 a b d}+\frac{A \sin (c+d x) \cos (c+d x) \sqrt{a+b \sec (c+d x)}}{2 d} \]

[Out]

((a - b)*Sqrt[a + b]*(A*b + 4*a*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b
)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a*b*d) + (Sqrt[a +
 b]*(A*b + 2*a*(A + 2*B))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)
]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a*d) - (Sqrt[a + b]*(4*a^2*
A - A*b^2 + 4*a*b*B)*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/
(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a^2*d) + ((A*b + 4*a
*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*a*d) + (A*Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(2
*d)

________________________________________________________________________________________

Rubi [A]  time = 0.732771, antiderivative size = 429, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {4032, 4104, 4058, 3921, 3784, 3832, 4004} \[ -\frac{\sqrt{a+b} \left (4 a^2 A+4 a b B-A b^2\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{4 a^2 d}+\frac{(4 a B+A b) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{4 a d}+\frac{\sqrt{a+b} (2 a (A+2 B)+A b) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{4 a d}+\frac{(a-b) \sqrt{a+b} (4 a B+A b) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{4 a b d}+\frac{A \sin (c+d x) \cos (c+d x) \sqrt{a+b \sec (c+d x)}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

((a - b)*Sqrt[a + b]*(A*b + 4*a*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b
)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a*b*d) + (Sqrt[a +
 b]*(A*b + 2*a*(A + 2*B))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)
]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a*d) - (Sqrt[a + b]*(4*a^2*
A - A*b^2 + 4*a*b*B)*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/
(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a^2*d) + ((A*b + 4*a
*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*a*d) + (A*Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(2
*d)

Rule 4032

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*m - a*B*n - (b*B*n + a*A*(n + 1))*C
sc[e + f*x] - A*b*(m + n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B,
0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && LeQ[n, -1]

Rule 4104

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n)/(a*f*n), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \cos ^2(c+d x) \sqrt{a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx &=\frac{A \cos (c+d x) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d}+\frac{1}{2} \int \frac{\cos (c+d x) \left (\frac{1}{2} (A b+4 a B)+(a A+2 b B) \sec (c+d x)+\frac{1}{2} A b \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{(A b+4 a B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac{A \cos (c+d x) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d}-\frac{\int \frac{\frac{1}{4} \left (-4 a^2 A+A b^2-4 a b B\right )-\frac{1}{2} a A b \sec (c+d x)+\frac{1}{4} b (A b+4 a B) \sec ^2(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{2 a}\\ &=\frac{(A b+4 a B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac{A \cos (c+d x) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d}-\frac{\int \frac{\frac{1}{4} \left (-4 a^2 A+A b^2-4 a b B\right )+\left (-\frac{1}{2} a A b-\frac{1}{4} b (A b+4 a B)\right ) \sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{2 a}-\frac{(b (A b+4 a B)) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx}{8 a}\\ &=\frac{(a-b) \sqrt{a+b} (A b+4 a B) \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{4 a b d}+\frac{(A b+4 a B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac{A \cos (c+d x) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d}+\frac{\left (4 a^2 A-A b^2+4 a b B\right ) \int \frac{1}{\sqrt{a+b \sec (c+d x)}} \, dx}{8 a}+\frac{(b (A b+2 a (A+2 B))) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{8 a}\\ &=\frac{(a-b) \sqrt{a+b} (A b+4 a B) \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{4 a b d}+\frac{\sqrt{a+b} (A b+2 a (A+2 B)) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{4 a d}-\frac{\sqrt{a+b} \left (4 a^2 A-A b^2+4 a b B\right ) \cot (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{4 a^2 d}+\frac{(A b+4 a B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac{A \cos (c+d x) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d}\\ \end{align*}

Mathematica [B]  time = 18.83, size = 1161, normalized size = 2.71 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(A*Sqrt[a + b*Sec[c + d*x]]*Sin[2*(c + d*x)])/(4*d) + (Sqrt[a + b*Sec[c + d*x]]*Sqrt[(1 - Tan[(c + d*x)/2]^2)^
(-1)]*(a*A*b*Tan[(c + d*x)/2] + A*b^2*Tan[(c + d*x)/2] + 4*a^2*B*Tan[(c + d*x)/2] + 4*a*b*B*Tan[(c + d*x)/2] -
 2*a*A*b*Tan[(c + d*x)/2]^3 - 8*a^2*B*Tan[(c + d*x)/2]^3 + a*A*b*Tan[(c + d*x)/2]^5 - A*b^2*Tan[(c + d*x)/2]^5
 + 4*a^2*B*Tan[(c + d*x)/2]^5 - 4*a*b*B*Tan[(c + d*x)/2]^5 - 8*a^2*A*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]],
 (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a +
 b)] + 2*A*b^2*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a
 + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 8*a*b*B*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]
], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a
 + b)] - 8*a^2*A*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c
 + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 2*A*b^2*EllipticPi[-1, -Ar
cSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(
c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 8*a*b*B*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a - b)/(a
+ b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^
2)/(a + b)] + (a + b)*(A*b + 4*a*B)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x
)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a*(2*
a*A - A*b + 4*b*B)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[
(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(4*a*d*Sqrt[b + a*Cos[c
+ d*x]]*Sqrt[Sec[c + d*x]]*(1 + Tan[(c + d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)
/2]^2)/(1 + Tan[(c + d*x)/2]^2)])

________________________________________________________________________________________

Maple [B]  time = 0.379, size = 2065, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x)

[Out]

-1/4/d/a*(-1+cos(d*x+c))^2*(-4*A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+2*A*cos(d*x+c)^4*a^2+8*A*(cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+
c),-1,((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+4*B*cos(d*x+c)^3*a^2+A*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^
(1/2))*b^2+4*B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1
))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2+3*A*cos(d*x+c)^3*a*b-A*cos(d*x+c)^2*a*b
+4*B*cos(d*x+c)^2*a*b-4*B*cos(d*x+c)*a*b+2*A*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b+A*cos(d*x
+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1
+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b-8*B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b+4
*B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ell
ipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b+8*B*cos(d*x+c)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c
),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*si
n(d*x+c)*a*b-8*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((
-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)+8*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(
b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a*b*sin(d*
x+c)-2*A*cos(d*x+c)^2*a^2-2*A*cos(d*x+c)*a*b-2*A*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))
*b^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+4*B*Elliptic
E((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)+A*cos(d*x+c)^2*b^2-4*B*cos
(d*x+c)^2*a^2-A*cos(d*x+c)*b^2-4*A*cos(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*(c
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+8*A*cos(d*x+c)*Elli
pticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-2*A*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^2+A
*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*a*b+2*A*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(c
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*a*b+4*B*EllipticE((
-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*sin(d*x+c)*a*b)*(cos(d*x+c)+1)^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sin(d
*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B \cos \left (d x + c\right )^{2} \sec \left (d x + c\right ) + A \cos \left (d x + c\right )^{2}\right )} \sqrt{b \sec \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c)^2*sec(d*x + c) + A*cos(d*x + c)^2)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^2, x)